Practice Guidelines

New medical treatments in thyroid cancer

On behalf of the Thyroid Task Force of the BSMO

L. Decoster, MD¹, F. Cornélis, MD², E. Joosens, MD³, S. Henry, MD⁴, P. Specenier, MD, PhD⁵, P. Clement, MD, PhD⁶

Thyroid cancers are rare diseases and include types that range from indolent localised differentiated carcinomas to fulminant and lethal anaplastic disease. Until recently, treatment options for advanced or metastatic radio-iodine refractory thyroid cancer were limited. Recently kinase inhibitors targeting angiogenesis and other pathways have shown promising activity.

(Belg J Med Oncol 2014;8(3):81-6)

Introduction

Thyroid carcinomas are divided into different histological types.¹ Differentiated thyroid cancers (DTC) account for 90% and are subdivided into papillary (PTC), follicular (FTC) and mixed tumours. Anaplastic thyroid cancer (ATC) accounts for 1-2% and has the worst prognosis. Because of its aggressive nature, all ATC are classified as stage IV according to the American Joint Committee on Cancer (AJCC), regardless of tumour size, presence of lymph nodes or distant metastasis. Medullary thyroid cancer (MTC), which has a distinct cellular origin, accounts for approximately 5-10% and may be sporadic (75%) or hereditary (25%).

Distant metastases are the main cause of mortality and are observed in less than 10% of DTC and in 50% of MTC or ATC.

Treatment of thyroid cancer is based on surgery, both for primary and regional metastatic disease. DTC is also responsive to radioactive iodine (RAI) and thyroid hormone therapy, but ATC and MTC are not.¹

For symptomatic or rapidly progressive advanced meta-

static disease, chemotherapy treatment options are limited and mainly doxorubicin based, resulting in response rates (RR) of 25% or less in DTC and MTC.^{2,3} ATC cells have been shown to be chemoresistant, but in a phase II study paclitaxel demonstrated a response rate of 53%.⁴

The present article is written by the members of the thyroid task force of the Belgian Society of Medical Oncology (BSMO) and reviews the contemporary targeted therapies for thyroid carcinoma.

Molecular biology of thyroid carcinoma Angiogenesis

Angiogenesis, regulated by the vascular endothelial growth factor receptor (VEGFR) family and its ligands, plays an important role in tumour proliferation and metastasis. The importance of angiogenesis in thyroid cancer is supported by a number of observations: 1) a high vascularity, 2) an overexpression of VEGFR-1 and VEGFR-2 and 3) correlation of VEGF expression with risk of metastases and shorter disease-free survival.^{5,6}

¹Department of Medical Oncology, Oncology Centre, UZ Brussel, Brussel, Belgium, ²Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussel, Belgium, ³Department of Medical Oncology, Jessa Ziekenhuis, Hasselt, Belgium, ⁴Department of Medical Oncology, CMSE Namur, Namur, Belgium, ⁵Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium, ⁶Department of Oncology, KU Leuven, Leuven, Belgium.

Please send all correspondence to: L. Decoster, MD, UZ Brussel, Oncology Centre, Department of Medical Oncology, Laarbeeklaan 101, 1090 Brussel, Belgium, tel: +32 2 477 62 11, email: lore.decoster@uzbrussel.be.

Conflict of interest: The authors have nothing to disclose and indicate no potential conflict of interest.

Keywords: kinase inhibitors, thyroid cancer.

81

Table 1. Targets of different multi-targeted tyrosine kinases inhibitors.

Drug	IC ₅₀ (nM)								
	VEGFR-1	VEGFR-2	VEGFR-3	RET	RET/PTC3	RAF	Other targets		
Sorafenib	-	90	20	49	50	6	-		
Sunitinib	2	9	17	41	224	-	-		
Vandetanib	1600	40	110	100	50-100	-	EGFR		
Pazopanib	10	30	47	-	-	-	PDGFR, cKIT		
Axitinib	1.2	0.25	0.29	-	-	-	-		
Motesanib	2	3	6	59	-	-	PDGFR, cKIT		
Cabozantinib	-	0.035	14	4	-	-	c-MET, cKIT		
Lenvatinib	22	4	5	35	-	-	PDGFR, FGFR-1		

Oncogenic kinases

Different oncogenic mutations have been recognised in all types of thyroid cancer.

In the majority of PTC activating mutations of BRAF (45%), RAS (10%) and the rearranged RET/PTC (20%) have been identified.¹ FTC develop through molecular pathways involving either RAS mutations (20-50%) or PAX8-PPAR γ rearrangements (35%).¹ In ATC several mutations have been identified such as BRAF, PI3K and P53 mutations.¹ Finally in MTC, activating RET mutations are present in most familial forms and in 50% of sporadic forms.⁷

Targeted therapies in thyroid cancer

VEGFR inhibitors

VEGFR inhibitors are multi-targeted kinase inhibitors (KI), primarily targeting angiogenesis. However, given the structural similarity between RET and VEGFR, most of these molecules are capable of inhibiting both. Other targets vary between different KIs but their therapeutic significance remains unclear. *Table 1* outlines the targets for different KIs. In total 26 trials with eight different KIs have been reported in thyroid cancer (*Table 2*).

In phase II trials for DTC, RR for sorafenib ranged from 15-38%.⁸⁻¹³ A randomised, placebo-controlled phase III study evaluating the efficacy of sorafenib in RAI-refractory DTC (Decision) resulted in an extended median progression free survival (PFS) by five months (10.8 versus 5.8 months, p<0.0001).¹⁴ In ATC, the activity of sorafenib was limited: RR of 10% and median PFS

two months. 15 In MTC, sorafenib demonstrated significant RR and durable SD. 8,13,16

In phase II trials including mainly DTC, RR for sunitinib varied between 6 and 31%.¹⁷⁻¹⁹ In MTC, sunitinib resulted in a partial response (PR) in 35% with a median PFS of seven months.²⁰

A randomised phase II trial in DTC demonstrated significantly longer PFS for vandetanib compared to placebo (11 versus 6 months, p=0.008).²¹ No difference in overall survival was observed between the two groups but a substantial number of patients receiving placebo crossed over to vandetanib. In phase II trials in MTC the RR was 16 and 20%.^{22,23} In a randomised, placebo-controlled phase III trial vandetanib demonstrated significant improvement of PFS (not reached versus 19 months, p<0.01), RR (45% versus 13%, p<0.001) and disease control rate (DCR) (87% versus 71%, p=0.01).²⁴ Based on these results vandetanib is approved in Canada, Switzerland, Europe and the USA for the treatment of medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease and is reimbursed in Belgium since May 2013.

Treatment with cabozantinib demonstrated in DTC a PR in 53% and in MTC in 29%.^{25,26} Recently, a randomised placebo-controlled phase III study in MTC (EXAM) demonstrated significant improvement of PFS (11 versus 4 months, p<0.0001) and RR (28 versus 0%, p<0.0001) for cabozantinib.²⁷ It is important to note that in this study documented disease progression within the past fourteen months was necessary for inclusion, while it

Practice Guidelines

Table 2. Studies comparing various sequences of hormonal therapy and radiotherapy in adjuvant treatment of breast cancer.									
Phase	Drug (reference)	Patients number/ Subtype	% OR	% SD > 6months	PFS (months)				
	Sorafenib ¹⁴ vs placebo	417 DTC	12 vs1	42 vs 33	11 vs 6 (p<0.0001)				
	Vandetanib ²⁴ vs placebo	331 MTC	82 vs 2	NR	Not reached vs 19 (p<0.01)				
	Cabozantinib ²⁷ vs placebo	330 MTC	28 vs 0	NR	11 vs 4 (p<0.0001)				
11	Vandetanib vs placebo ²³	72 DTC	8 vs 5	NR	11 vs 6 (p=0.008)				
Ш	Sorafenib ^{8-13, 15,16}	30 DTC	23	NR	NR				
		41 PTC	15	56	56				
		32 DTC	25	34	34				
		34 DTC/MTC	15	73	73				
		55 DTC	38	NR	NR				
		31 DTC	31	NR	NR				
		20 ATC	10	NR	NR				
		16 MTC	6.3	56	56				
	Sunitinib ¹⁷⁻²⁰	35 DTC/MTC	31	37	13				
		43 DTC/ATC/MTC	13	NR	NR				
		17 DTC/ATC/MTC	6	NR	NR				
		25 MTC	35	NR	7				
	Vandetanib ^{22,23}	30 MTC	20	53	28				
		19 MTC	16	53	NR				
	Cabozantinib ²⁵	15 DTC	53	NR	NR				
	Pazopanib ^{28,29}	37 DTC	49	NR	NR				
		16 ATC	0	NR	2				
	Axitinib ³⁰	60 DTC/ATC/MTC	30	NR	18				
	Motesanib ^{31,32}	93 DTC	14	35	10				
		91 MTC	2	48	12				
	Lenvatinib ^{33,34}	58 DTC	50	NR	13				
		59 MTC	36	NR	9				
	Cabozantinib ²⁶	37 MTC	27	41	NR				

OR: objective response; SD: stable disease; PFS: progression free survival; DTC: differentiated thyroid cancer; MTC: medullary thyroid cancer; ATC: Anaplastic thyroid cancer; NR: not reported.

was not in the study with vandetanib.

Other multi-targeted KI such as pazopanib, axitinib, motesanib and lenvatinib, have shown promising activity (both RR and durable SD) in open-label phase II trials, mainly in DTC and MTC.²⁸⁻³⁴ Efficacy in ATC is often disappointing.^{29,30} A phase III trial (Select) in DTC with lenvatinib completed enrolment in October 2012. The results of this trial were reported at ASCO 2014. In a press release, Eisai stated that the trial reached its primary endpoint of progression free survival benefit and that marketing authorisation applications will be submitted.

Other anti-angiogenic drugs

Fosbretabulin or combretastatin A4 phosphate (CA4P) is a vascular disrupting agent and was studied in patients with ATC. In monotherapy 27% of patients demonstrated a SD and six months OS was 34%.³⁵ In a randomised phase II/III trial, the addition of CA4P to carboplatin/paclitaxel chemotherapy after surgery led to a non-significant improvement of median survival (8.2 versus 4.0 months, p=0.25) and one year survival (17 versus 10%).³⁶

Other targeted agents

In phase I, selective inhibitors of mutant BRAF have activity.^{37,38} A phase II study with vemurafenib in BRAF mutant PTC reported objective responses in 26 and 35% for patients with or without prior treatment with a kinase inhibitor and a median PFS of seven and sixteen months respectively.³⁹

Selumetinib, a MEK inhibitor, increased $^{124}\mathrm{I}$ uptake in patients with RAI-refractory DTC. 40

In addition combinations of VEGFR-inhibitors with mTOR inhibitors are currently under investigation.

In a small phase II study, Ha et al treated eleven patients with advanced ATC with imatinib, a selective inhibitor of KIT and PDGFR. Among these patients two obtained a PR and four a SD with a six month OS of 46%.⁴¹

Conclusion

Throughout the past years, biological discoveries and novel therapies have changed treatment options for patients with advanced thyroid cancer.

In DTC and MTC multi-targeted KIs have produced promising results, in contrast to chemotherapy previously. However, prior to initiation of KI therapy, it is important to identify which patient may benefit from such a treatment because of possible important adverse effects such as hypertension, heart failure, proteinuria, gastrointestinal events, effects on thyroid function and haematological effects. In general, patients who are candidates for treatment are patients with symptomatic disease, large tumour burden or rapid disease progression and good overall performance status. Advanced metastatic DTC and MTC without symptoms, low tumour burden and slow progression can be followed at regular time intervals every six to twelve months and do not need systemic treatment instantly. For DTC, sorafenib resulted in significant PFS improvement in a randomised phase III study and results with lenvatinib are awaited. None of the drugs are currently reimbursed for DTC, but for sorafenib, there is currently a medical need program.

For MTC, placebo-controlled phase III trials with vandetanib and cabozantinib have resulted in improvement of RR and PFS. Cross trial comparison is impossible as inclusion criteria were different. Vandetanib is reimbursed since May 2013 in Belgium, making it the first line treatment of choice for patients with advanced MTC in need of systemic treatment.

Due to the aggressiveness of the disease all patients with advanced ATC are candidates for systemic treatment. At the present time, paclitaxel appears to have some efficacy. Results with KIs were less promising but fosbretabulin alone or in combination with chemotherapy did show interesting activity. Further investigation of these and other drugs is needed in this deadly disease, including rational designed preclinical experiments based on the genomics of this cancer.

In conclusion, VEGFR inhibitors are currently becoming standard of care for advanced RAI refractory DTC and MTC. However, further research to improve outcome and overcome resistance is warranted. Inclusion of patients in clinical trials as often as possible is preferable.

References

1. Sherman SI. Thyroid carcinoma. Lancet 2003;361(9356):501-11.

 Sherman SI. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clin Oncol (R Coll Radiol) 2010;22(6):464-8.

 Shimaoka K, Schoenfeld DA, DeWys WD, et al. A randomised trial of doxorubicin versus doxorubicin plus cisplatin in advanced thyroid cancer. Cancer 1985;56(9):2155-60.

 Ain KB, Egorin MJ, DeSimone PA. Treatment of anaplastic thyroid carcinoma with paclitaxel: a phase 2 trial using ninety-six-hour infusion. Thyroid 2000;10(7): 587-94.

 Keefe SM, Cohen MA, Brose MS. Targeting vascular endothelial growth factor receptor in thyroid cancer: the intracellular and extracellular implication. Clin Cancer Res 2010;16(3):778-83.

6. Klein M, Vignaud JM, Hennequin V, et al. increased expression of the vascular

Key messages for clinical practice

- 1. Multi-targeted kinase inhibitors have shown promising activity in differentiated and medullary thyroid cancer, both in phase II and phase III trials.
- 2. For advanced differentiated and medullary thyroid cancer systemic treatment is only indicated in the case of symptomatic disease, high tumour burden or rapid disease progression.
- 3. For differentiated thyroid cancer, sorafenib has demonstrated significant improvement in progression free survival over placebo.
- 4. For medullary thyroid cancer, phase III studies with vandetanib and cabozantinib have demonstrated significant improvement in progression free survival over placebo.
- 5. In anaplastic thyroid cancer the medical need remains high.
- 6. Other targets are currently under investigation for therapeutic impact.

endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab 2001;86(2):656-8.

7. Wells SA, Santoro M. Targeting the RET pathway in thyroid cancer. Clin Cancer Res 2009;15(23):7119-23.

8. Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 2008;26(29):4714-9.

9. Kloos RT, Ringel MD, Knopp MV, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 2009;27(10):1675-84.

10. Hoftijzer H, Heemstra KA, Morreau H, et al. Beneficial effects of sorafenib on tumour progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol 2009;161(6):923-31.

11. Ahmed M, Barbachano Y, Ridell A, et al. Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a phase II study in a UK based population. Eur J Endocrinol 2011;165(2):315-22.

12. Keefe SM, Troxel AB, Rhee S, et al. Phase II trial of sorafenib in patients with advanced thyroid cancer. J Clin Oncol 2011;29(suppl; abstr 5562).

13. Schneider TC, Abdulrahman RM, Corssmit EP, et al. Long-term analysis of the efficacy and tolerability of sorafenib in advanced radio-iodine refractory differentiated thyroid carcinoma: final results of a phase II trial. Eur J Endocrinol 2012;167(5):643-50.

14. Brose M, C Nutting, B Jarzab, R Elisei, S Siena, L Bastholt et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double blind phase 3 trial. Lancet 2014; doi:10.1016/50140-6736(14)604219

 Savvides P, Nagaiah G, Lavertu P, et al. Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid. Thyroid 2013;23(5):600-4.
Lam ET, Ringel MD, Kloos RT, et al. Phase II trial of sorafenib in metastatic

medullary thyroid cancer. J Clin Oncol 2010;28(14):2323-30.

17. Carr LL, Mankoff DA, Goulart BH. Phase II study of daily sunitinib in FDG-PET-

positive iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res 2010;16(21):5260-8.

18. Ravaud A, De la Fouchardière C, Courbon F, et al. Sunitinib in patients with refractory advanced thyroid cancer: the THYSU phase II trial. J Clin Oncol 2008;26(suppl; abstr 6058).

19. Cohen EE, Needles BM, Cullen KJ. Phase 2 study of sunitinib in refractory thyroid cancer. J Clin Oncol 2008;26(suppl; abstr 6025).

20. De Souza JA, Busaidy N, Zimrin A, et al. Phase II trial sunitinib in medullary thyroid cancer (MTC). J Clin Oncol 2010;28:15s(suppl; abstr 5504).

21. Leboulleux S, Bastholt L, Krause T, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol 2012;13(9):897-905.

22. Wells SA, Gosnell JE, Gagel RF, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 2010;28(5):767-72.

23. Robinson BG, Paz-Ares L, Krebs A, et al. Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Endocrinol Metab 2010;95(6):2664-71.

24. Wells SA, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomised double-blind phase III trial. J Clin Oncol 2012;30(2):134-41.

25. Cabanillas ME, Brose MS, Ramies DA, et al. Antitumor activity of cabozantinib (XL184) in a cohort of patients (pts) with differentiated thyroid cancer (DTC). J Clin Oncol 2012;30(suppl; abstr 5547).

26. Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 2011;29(19):2660-6.

27. Elisei R, Schlumberger MJ, Müller SP, et al. Cabozantinib in progressive

medullary thyroid cancer. J Clin Oncol 2013; 31:3639-46

28. Bible KC, Suman VJ, Molina JR, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol 2010;11(10):962-72.

29. Bible KC, Suman VJ, Menefee ME, et al. A multi-institutional phase II trial of pazopanib monotherapy in advanced anaplastic cancer. J Clin Oncol 2012; 30(suppl; abstr 5544).

30. Cohen EEW, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol 2008;26(29):4708-13.

31. Sherman SI, Wirth LJ, Droz JP, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 2008;359(1):31-42.

32. Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol 2009;27(23):3794-801.

33. Sherman SI, Jarzab B, Cabanillas ME, et al. A phase II trial of the multitargeted kinase inhibitor E7080 in advanced radio-iodine (RAI)-refractory differentiated thyroid cancer (DTC). J Clin Oncol 2011;29(suppl; abstr 5503).

34. Schlumberger M, Jarzab B, Cabanillas ME, et al. A phase II trial of the multitargeted kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer (MTC). J Clin Oncol 2012;30(suppl; abstr 5591).

35. Mooney C, Nagaiah G, Fu P, et al. A phase II trial of fosbretabulin in ad-

vanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid 2009;19(3):233-40.

36. Sosa JA, Balkissoon J, Lu SP, et al. Thyroidectomy followed by fosbretabulin (CA4P) combination regimen appears to suggest improvement in patient survival in anaplastic thyroid cancer. Surgery 2012;152(6):1078-87.

37. Flaherty K, Puzanov I, Sosman J, et al. Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J Clin Oncol 2009;27(suppl; abstr 9000).

38. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 doseescalation trial. Lancet 2012;379(9829):1893-901.

39. Brose MS, Cabanillas ME, Cohen EE, et al. An open-label, multi-centre phase 2 study of the BRAF inhibitor vemurafenib in patients with metastatic or unresectable papillary thyroid cancer (ptc) positive for the BRAF V600 mutation and resistant to radioactive iodine. Eur J Cancer 2013;3(suppl; abstr LBA28).

40. Ho AL, Leboeuf R, Grewal K, et al. Reacquisition of RAI uptake in RAI-refractory metastatic thyroid cancers by pre-treatment with the MEK inhibitor selumetinib. J Clin Oncol 2012;30(suppl; abstr 5509).

41. Ha HT, Lee JS, Urba S, et al. Phase II trial evaluating imatinib (I) in patients (pts) with anaplastic thyroid carcinoma (ATC). J Clin Oncol 2009;27(suppl; abstr 6057).

